Anno, S., Hirakawa, T., Sugita, S. & Yasumoto, S. (2022). A graph convolutional network for predicting COVID-19 dynamics in 190 regions/countries. Frontiers in public health, No.10.
Baghbani, Sh. (2017). Techniques and methods of machine learning on big data. In: Isfahan: National Conference of New Technologies in Electrical and Computer Engineering. [in persian]
Chansanam, W., Kwiecien, K., Buranarach, M. & Tuamsuk, K. (2021). A Digital Thesaurus of Ethnic Groups in the Mekong River Basin. Informatics-Basel, 8(3): 50.
Ding, Y., Zhang, Z.L., Zhao, X.F., Hong, D.F., Cai, W., Yu, C.G., Yang, N.J. & Cai, W.W. (2022). Multi-feature fusion: Graph neural network and CNN combining for hyperspectral image classification. Neurocomputing, 501: 246-257.
Du, X.W., Wan, L. & Shen, G. (2022). An Improved Graph Convolution Network for Robust Image Retrieval. Neural Processing Letters, Early Access, 13 NOV 2022.
https://doi.org/10.1007/s11063-022-11083-2.
Evans, D.A., Ginther-Webster, K., Hart, M., Lefferts, R.G. & Monarch, I. (1991). Automatic indexing using selective NLP and first-order thesauri. RIAO Conference.
Fan, L., Sun, X. & Rosin, P.L. (2021). Siamese Graph Convolution Network for Face Sketch Recognition: An application using Graph structure for face photo-sketch recognition. In: 2020 25th International Conference on Pattern Recognition (ICPR): 8008-8014.
Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O. & Dahl, G.E. (2017). Neural Message Passing for Quantum Chemistry. ArXiv, abs/1704.01212.
Gowril, G., Devi, R., Sethuraman, K. & Phil, M. (2019). Machine learning. International Journal of Research and Analytical Reviews, 6(2).
Harkin, T. (2022). Creating a Linked Data thesaurus for Irish traditional music. AI & Society, 37(3): 967-974.
Hasanpour Mati kalai, S.H.; Saadati, R. (2016). An overview of the latest changes and updates in convolutional neural network. In: Kashan: 3rd National Conference on Electrical and Computer Engineering, Distributed Systems and Smart Networks. [in persian]
Hasanzadeh, A., Hajiramezanali, E., Duffield, N.G., Narayanan, K.R., Zhou, M. & Qian, X. (2019). Semi-Implicit Graph Variational Auto-Encoders. ArXiv, abs/1908.07078.
Huang, X.H., Ye, Y.M., Ding, W.H., Yang, X.F. & Xiong, L.Y. (2022). Multi-mode dynamic residual graph convolution network for traffic flow prediction. Information Sciences, 609: 548-564.
Ioannidis, V.N., Zheng, D. & Karypis, G. (2020). Few-shot link prediction via graph neural networks for Covid-19 drug-repurposing. arXiv, 1-6.
Ito, M., Nakayama, K., Hara, T. & Nishio, S. (2008). Association thesaurus construction methods based on link co-occurrence analysis for wikipedia. CIKM '08: Proceeding of the 17th ACM conference on Information and knowledge management (pp. 817-826). New York, NY, USA: ACM.
Jarmasz, M. & Szpakowicz, S. (2003). Roget's thesaurus and semantic similarity. Paper presented at the meeting of the Conference on Recent Advances in Natural Language Processing: 212-219.
Jiang, H., Cao, P., Xu, M., Yang, J. & Zaiane, O. (2020). Hi-GCN: A hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction. Computers in biology and medicine, 127: 104096.
Jing, Y. & Croft, W.B. (1994). An association thesaurus for information retrieval. Technical Report UMASS-CS-94-17. University of Massachusetts.
Karimi, M. (2021). The traditional work procedure of the thesaurus of Islamic sciences. Interviewer: A. Nexsmdost. [in persian]
Karimi, M., Hasanzadeh, A. & Shen, Y. (2020). Network-principled deep generative models for designing drug combinations as graph sets. Bioinformatics, 36(Supplement_1): i445-i454.
Keramatfar, A., Rafie, M. & Amirkhani, H. (2021). Graph Neural Networks: a bibliometrics overview. Preprint. IEEE Access. Available Online at:
https://www.researchgate.net/profile/Mohadeseh-Rafie/publication/353953475_Graph_Neural_Networks_a_bibliometrics_overview/links/611bb34e169a1a0103082d34/Graph-Neural-Networks-a-bibliometrics-overview.pdf
Kipf, T. (2020). Deep learning with graph-structured representations. Doctoral thesis. Amsterdam Machine Learning lab (IVI, FNWI). Available at:
https://dare.uva.nl/personal/pure/en/publications/deep-learning-with-graphstructured-representations(1b63b965-24c4-4bcd-aabb-b849056fa76d). html
Li, L., Zhu, H.G., Wen, L.B., Lan, W.Z. & Yang, Z.K. (2021). An Approach of Combining Convolution Neural Network and Graph Convolution Network to Predict the Progression of Myopia. Neural Processing Letters. https://doi.org/10.1007/s11063-021-10576-w
McCoy, K., Gudapati, S., He, L., Horlander, E., Kartchner, D. & et al. (2021). Biomedical Text Link Prediction for Drug Discovery: A Case Study with COVID-19. Pharmaceutics, 13(6): 794.
Musaei, A.A. (2008). What is a thesaurus? Available at: https://vista.ir/w/a/16/i0uki [in persian]
Nakayama, K., Hara, T. & Nishio, S. (2007). A Thesaurus Construction Method from Large ScaleWeb Dictionaries. In: 21st International Conference on Advanced Information Networking and Applications (AINA '07): 932-939.
Rajabi, T., Hosseini Beheshti, M.S. & Sediqi, M. (2019). Updating and developing scientific and technical thesauruses of Irandak. Information Management, 5(1): 99-118. [in persian]
Sakai, M., Nagayasu, K., Shibui, N., Andoh, C., Takayama, K., Shirakawa, H. & Kaneko, S. (2021). Prediction of pharmacological activities from chemical structures with graph convolutional neural networks. Scientific reports, 11(1): 525.
Smeaton, A.F. (1999). Using NLP or NLP Resources for Information Retrieval Tasks. In: Strzalkowski, T. (eds.), Natural Language Information Retrieval. Text, Speech and Language Technology, Vol.7. Springer, Dordrecht.
Stokes, N., Li, Y., Moffat, A. & Rong, J. (2008). An empirical study of the effects of NLP components on Geographic IR performance. International Journal of Geographical Information Science, 22(3): 1-14.
Tandpour, A. (2004). Thesaurus: structure and form. Information sciences, 19(1-2). [in persian]
Tseng, Y.H. (2002). Automatic thesaurus generation for Chinese documents. Journal of the American Society for Information Science and Technology, 53: 1130-1138.
Wen, G., Cao, P., Bao, H., Yang, W., Zheng, T. & Zaiane, O. (2022). MVS-GCN: A prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis. Computers in biology and medicine, 142.
Wilks, Y. (1996). Natural language processing. Commun. ACM, 39(1): 60–62.
https://doi.org/10.1145/234173.234180
Yaqub-nejad, M.H. (1996). An introduction to the basics of the thesaurus of Islamic sciences. Qom: Bostan Ketab. [in persian]
Yu, K., Jiang, H., Li, T., Han, S. & Wu, X.F. (2020). Data Fusion Oriented Graph Convolution Network Model for Rumor Detection. IEEE Transactions on Network and Service Management, 17(4): 2171-2181.
Zhang, M. & Chen, Y. (2018). Link prediction based on graph neural networks. Advances in Neural Information Processing Systems, 31: 5165-5175.
Zhou, J., Huang, J.X., Hu, Q.V. & He, L. (2020). SK-GCN: Modeling Syntax and Knowledge via Graph Convolutional Network for aspect-level sentiment classification. Knowledge-Based Systems, 205: 106292.
Send comment about this article