Alexander, J. (2016). Leveraging Big Data for Science & Innovation Indicators: Pitfalls and Promises- Big Data for Science & Innovation Indicators. Prepared for the OECD Blue Sky Forum III: Towards the Next Generation of Science and Engineering Indicators, 19-21 September 2016, Ghent, Belgium.
Alizadeh, P. & Manteghi, M. (2019). Policies for Supporting R&D in the Business Sector.
Journal of Science & Technology Policy, 11(2): 363-378.
https://doi.org/
20.1001.1.20080840.1398.12.2.24.9 [in persian]
Alizadeh, S., Norbakhsh, S.K. & Ghasemi, B. (2022). Designing Factors Affecting Research and Development Strategies in Domestic Automotive Companies with Emphasis on Structural-Interpretive Approach (ISM).
Journal of improvement management, 16(3).
https://doi.org/
20.1001.1.22518991.1401.16.3.5.1 [in persian]
Allam, Z., Dhunny & Z.A. (2019). On big data, artificial intelligence and smart cities. Cities, vol. 89: 80–91.
Amsden, A.H. & Tschang, F.T. (2003). A new approach to assessing the technological complexity of different categories of R&D (with examples from Singapore). Research policy, 32(4): 553-572.
Asghari, M., Khamseh, A. & Pilevari, N. (2021). A model for improving R&D abilities with aqualitative approach in the power plant equipment manufacturing and energy supply industries.
Journal of Innovation Management In Defensive Organizations, (10): 125-150.
https://doi.org/10.22034/qjimbo.2020.220525.1275 [in persian]
Barnaghi, P., Sheth, A. & Henson, C. (2013). From data to actionable knowledge: big data challenges in the web of things. IEEE Intell. Syst, 28(6).
Belle, A., Thiagarajan, R., Soroushmehr, S.M.R., Navidi, F., Beard, D.A. & Najarian, K. (2015). Big Data Analytics in Healthcare.
BioMed Research International: 1–16.
http://doi.org/10.1155/2015/370194
Beretta, M. (2019). Idea selection in web-enabled ideation systems.
Journal of Production Innovation Managment, 36(1): 5–23. http://doi.org/
10.1111/jpim.12439
Berkhout, A.J., Hartmann, D., Van Der Duin, P. & Ortt, R. (2006). Innovating the innovation process. International Journal of Technology Management 34(3-4): 390–404.
http://doi.org/10.1504/IJTM.2006.009466
Blackburn, M., Alexander, J., Legan, D. & Klabjan, D. (2017). Big Data and the Future of R&D Management. Research-Technology Management journal, 60(5): 43-51
Botha, A. (2016). Future Thinking in R&D Management, R&D Management Conference 2016 “From Science to Society: Innovation and Value Creation. 3-6 July 2016, Cambridge, UK. URL= https://scholar.google.com/citations?view_op=view_citation&hl=en&user=aa3uHzwAAAAJ&citation_for_view=aa3uHzwAAAAJ:d1gkVwhDpl0C
Brunswicker, S., Bertinob, E. & Matei, S. (2015). Big Data for Open Digital Innovation: A Research Roadmap.
Big Data Research journal, 35(2).
http://doi.org/
10.1016/j.bdr.2015.01.008
Chan, J.O. (2013). An architecture for Big Data analytics. Communications of the IIMA, 13(2).
Chen, J., Chen, Y., Du, X., Li, C., Lu, J., Zhao, S. & Zhou, X. (2013). Big data challenge: a data management perspective. Front. Comput. Sci. 7(2): 157–164.
Constantiou, I.D. & Kallinikos, J. (2015). New games, new rules: big data and the changing context of strategy. J. Inf. Technol, 30(1): 44–57.
Davenport, T.H. (2014). How strategists use “big data” to support internal business decisions, discovery and production. Strateg.
Leadersh. 42(4): 45–50.
http://doi.org/
10.1080/08956308.2017.1348135
Dubey, R., Gunasekaran, A., Childe, S.J., Fosso Wamba, S., Roubaud, D. & Foropon, C. (2019). Empirical investigation of data analytics capability and organizational flexibility as complements to supply chain resilience. Int. J. Prod. Res, 59(1): 1–19.
Fadairo, S.A., Williams, R. & Maggio, E. (2015). Using Data Analytics for Oversight and Efficiency. The journal of government financial management, 64(2): 18.
Gandomi, A. & Haider, M. (2015). Beyond the hype: big data concepts, methods, and analytics. Int. J. Inf. Manag, 35(2): 137–144.
Garmaki, M., Boughzala, I. & Wamba, S.F. (2016). The Effect of Big Data Analytics Capability on Firm Performance. PACIS. URL= https://core.ac.uk/download/pdf/301369542.pdf
George, G., Osinga, E.C., Lavie, D. & Scott, B.A. (2016). Big data and data science methods for management research. Acad. Manag. J., 59(5): 1493–1507.
Groves, R.M. (2011). Three eras of survey research. Public Opinion Quarterly, 75(5): 861-871.
Guba, E.G. & Lincoln, Y.S. (1994). Competing paradigms in qualitative research. Handbook of qualitative research. CA: Sage.
Gupta, M. & George, J.F. (2016). Toward the development of a big data analytics capability. Inf. Manag, 53(8): 1049–1064.
Henry, R. & Venkatraman, S. (2015). Big Data Analytics: The next big learning opportunity. Academy of Information and Management Sciences Journal, 18(2): 17–29.
Holden, G. (2016). Big Data and R&D Management. Research-Technology Management, 59(5):
22-26. http://doi.org/10.1080/08956308.2016.1208044
Howe, B. (2015). A confluence of big data skills in academic and industry R&D. Presentation given at the IRI Annual Meeting, Seattle, Washington.
Kensen, A.K., Pretorius, J.H. & Petorius, L. (2014). Towards the sixth generation of R&D management: an exploratory study. In: IAMOT (Ed.): Proceedings of the International Conference for the International Association of Management of Technology, Washington.
Khamseh, A. & Assari, M.H. (2019). Management of Research and Development. Sarafraz.
[in persian]
Khederveysi, H., Rangriz, H., Salavati, A. & Soltanpanah, H. (2019). Identifying and examining factors affecting transformational organizational performance.
Journal of Innovation Management In Defensive Organizations, 2(3). https://doi.org/
10.22034/qjimdo.2019.89197 [in persian]
Mikalef, P., Pappas, I.O., Krogstie, J. & Giannakos, M. (2018). Big data analytics capabilities: a systematic literature review and research agenda. Inf. Syst. E Bus. Manag, 16(3): 547–578.
Mirzazadeh, A., Zeraatkar, M. (2022). A Model for Critical Success Factors in New Automotive Product Development Processes with DFX Approach. Journal of Industrial Technology Development, 49(20). https://doi.org/10.22034/jtd.2022.252584 [in persian]
Mowery, D.C. (2009). Plus ca change: Industrial R&D in the third industrial revolution. Industrial and Corporate Change, 18(1): 1–50.
Nicol, D. (2013). Mobile Strategy: How Your Company Can Win by Embracing Mobile Technologies. Boston, MA, US: IBM Press.
OECD (2013).
Exploring Data-Driven Innovation as a New Source of Growth: Mapping the Policy Issues Raised by Big Data. OECD Digital Economy Papers, No. 222, OECD Publishing, Paris.
https://doi.org/10.1787/5k47zw3fcp43-en
OECD (b2015).
Frascati Manual 2015: Guidelines for Collecting and Reporting Data on Research and Experimental Development, The Measurement of Scientific, Technological and Innovation Activities, OECD Publishing, Paris.
https://doi.org/10.1787/9789264239012-en
Otto, B., Jürjens, J., Schon, J., Auer, S., Menz, N., Wenzel, S. & Cirullies, J. (2016). Industrial Data Space. Digitale Souveränität über Daten. With assistance of Jan Cirullies. Edited by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. München. URL:
https://www.fraunhofer.de/content/dam/zv/de/Forschungsfelder/industrial-data-space/Industrial-Data-Space_whitepaper.pdf
Rajaraman, A. & Ullman, J.D. (2011). Mining of Massive Datasets. Cambrige, UK: Cambrige University Press.
Seddon, J.J.J.M. & Currie, W.L. (2017). A model for unpacking big data analytics in highfrequency trading. J. Bus. Res. no. 70: 300–307.
Shreedhar, K., Bhukya, D. & Hariom, S.H. (2014). R&D Plan-informatic in the era of big data. Council of Scientific & Industrial Research, New Delhi, India
Sivarajah, U., Kamal, M.M., Irani, Z. & Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods. J. Bus. Res. no. 70: 263-286.
Strauss, A.L. & Corbin, J.M. (1990). On Emergence and Forcing in Information Systems Grounded Theory Studies. Enacting Research Methods in Information Systems, vol.1: 110-283.
Tayari, A., Pourkarimi, J. & Heydari, K. (2022). The drivers and obstacles to the success of R&D projects of RTO (Case Study: acecr).
Journal of Management of Innovation, 11(3).
https://doi.org/
20.1001.1.23225386.1401.11.3.3.9 [in persian]
UNESCO. (1982). Guide for Collecting Statistics Relating to Science and Technology Activities. Report No. 2. URL= https://unesdoc.unesco.org/ark:/48223/pf0000063537
Urbinati, A., Bogers, M., Chiesa, V. & Frattini, F. (2018). Creating and capturing value from Big Data: a multiple-case study analysis of provider companies.
Technovation, vols. 84-85: 21-36. http://doi.org/
10.1016/j.technovation.2018.07.004
Wamba, S.F., Gunasekaran, A., Akter, S., Ren, S.J., Fan Dubey, R. & Childe, S.J. (2017). Big data analytics and firm performance: effects of dynamic capabilities. J. Bus. Res., no.70: 356–365.
Wohlfart, L., Moll, K. & Wilke, J. (2011).
Karriere- und Anreizsysteme für die Forschung und Entwicklung. Aktuelle Erkenntnisse und zukunftsweisende Konzepte aus Wissenschaft und betrieblicher Praxis. Stuttgart: Fraunhofer-Verl. http://doi.org/
10.24406/publica-fhg-295419
Wu, X., Zhu, X., Wu, G.-Q. & Ding, W. (2014). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 26(1): 97–107.
Zhan, Y., Tan, K.H., Ji, G., Chung, L. & Tseng, M. (2017). A big data framework for facilitating product innovation processes. Bus. Process Manag. J., 23(3): 518–536.
Send comment about this article