Afroz, S.; Brennan, M. & Greenstadt, R. (2012). Detecting hoaxes, frauds, and deception in writing style online. In: 2012 IEEE Symposium on Security and Privacy (pp. 461-475). IEEE.
Aker, A.; Derczynski, L. & Bontcheva, K. (2017).
Simple open stance classification for rumour analysis. Proceedings of the International Conference Recent Advances in Natural Language Processing: 31-39.
DOI: 10.26615/978-954-452-049-6_005.
Allcott, H. & Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of economic perspectives, 31(2): 211-36.
Allport, G.W. & Postman, L. (1946). An analysis of rumor. Public opinion quarterly, 10(4): 501-517.
Andorfer, A (2017). Spreading like wildfire: Solutions for abating the fake news problem on social media via technology controls and government regulation. Hastings LJ, 69: 1409.
Berkowitz, D. & Schwartz, D.A. (2016). Miley, CNN and The Onion: When fake news becomes realer than real. Journalism practice, 10(1): 1-17.
Briscoe, E.J.; Appling, D.S. & Hayes, H. (2014). Cues to deception in social media communications. In: 2014 47th Hawaii international conference on system sciences (pp.1435-1443). IEEE.
Castillo, C.; Mendoza, M. & Poblete, B. (2011). Information credibility on twitter. In: Proceedings of the 20th international conference on World wide web (pp.675-684).
Chang, C.; Zhang, Y.; Szabo, C. & Sheng, Q.Z. (2016). Extreme user and political rumor detection on twitter. In: International Conference on Advanced Data Mining and Applications (pp.751-763). Springer, Cham.
Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H. & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). 1724-1734. DOI: 10.3115/v1/D14-1179.
Conroy, N.K.; Rubin, V.L. & Chen, Y. (2015). Automatic deception detection: Methods for finding fake news. Proceedings of the Association for Information Science and Technology, 52(1): 1-4.
Derczynski, L. & Bontcheva, K. (2014). Pheme: Veracity in Digital Social Networks. In: UMAP workshops.
Giasemidis, G.; Singleton, C.; Agrafiotis, I.; Nurse, J.R.; Pilgrim, A.; Willis, C. & Greetham, D.V. (2016). Determining the veracity of rumours on Twitter. In: International Conference on Social Informatics (pp.185-205). Springer, Cham.
Gorrell, G.; Bontcheva, K.; Derczynski, L.; Kochkina, E.; Liakata, M. & Zubiaga, A. (2018). Rumoureval 2019: Determining rumour veracity and support for rumours. Proceedings of the 13th International Workshop on Semantic Evaluation. 845-854. DOI: 10.18653/v1/S19-2147.
Jacovi, A.; Shalom, O.S. & Goldberg, Y. (2018). Understanding convolutional neural networks for text classification. Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. pp: 56-65. DOI: 10.18653/v1/W18-5408.
Kim, Y. (2014). Convolutional neural networks for sentence classification. CoRR abs/1408.5882 (2014). Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). 1746-1751. DOI: 10.3115/v1/D14-1181.
Knapp, R.H. (1944). A psychology of rumor. Public opinion quarterly, 8(1): 22-37.
Kochkina, E.; Liakata, M. & Zubiaga, A. (2018). All-in-one: Multi-task learning for rumour verification. Proceedings of the 27th International Conference on Computational Linguistics: 3402-3413.
Kohavi, R. & Quinlan, J.R. (2002). Data mining tasks and methods: Classification: decision-tree discovery. In: Handbook of data mining and knowledge discovery: 267-276.
Kshetri, N. & Voas, J. (2017). The economics of “fake news”. IT Professional, 19(6): 8-12.
Kucharski, A. (2016). Study epidemiology of fake news. Nature, 540(7634): 525-525.
Kwon, S.; Cha, M.; Jung, K.; Chen, W. & Wang, Y. (2013). Prominent features of rumor propagation in online social media. In: 2013 IEEE 13th international conference on data mining (pp. 1103-1108). IEEE.
LeCun, Y.; Kavukcuoglu, K. & Farabet, C. (2010). Convolutional networks and applications
in vision. In: Proceedings of 2010 IEEE international symposium on circuits and systems
(pp.253-256). IEEE.
Ma, J.; Gao, W.; Mitra, P.; Kwon, S.; Jansen, B.J.; Wong, K.F. & Cha, M. (2016). Detecting rumors from microblogs with recurrent neural networks. Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16): 3818-3824.
Meyer, J.K. (1969). Bibliography on the urban crisis: The behavioral, psychological, and sociological aspects of the urban crisis. In: proceedings Meyer 1969 Bibliography OT.
Pogue, D. (2017). How to Stamp Out Fake News. Scientific American, 316(2): 24-24.
Qin, Y.; Wurzer, D.; Lavrenko, V. & Tang, C. (2016). Spotting rumors via novelty detection. Vol. abs/1611.06322. n. pag.
Rapoza, K. (2017). Can ‘fake news’ impact the stock market?. Available at:
https://www.forbes.com/sites/kenrapoza/2017/02/26/can-fake-news-impact-the-stock-market/?sh=293d89802fac.
Rubin, V.L.; Chen, Y. & Conroy, N.K. (2015). Deception detection for news: three types of fakes. Proceedings of the Association for Information Science and Technology, 52(1): 1-4.
Rubin, V.L.; Conroy, N.; Chen, Y. & Cornwell, S. (2016). Fake news or truth? using satirical cues to detect potentially misleading news. In: Proceedings of the second workshop on computational approaches to deception detection: 7-17.
Ruchansky, N.; Seo, S. & Liu, Y. (2017). Csi: A hybrid deep model for fake news detection. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management: 797-806.
Sharma, K.; Qian, F.; Jiang, H.; Ruchansky, N.; Zhang, M. & Liu, Y. (2019). Combating fake news: A survey on identification and mitigation techniques. ACM Transactions on Intelligent Systems and Technology (TIST), 10(3): 1-42.
Shu, K.; Sliva, A.; Wang, S.; Tang, J. & Liu, H. (2017). Fake news detection on social media: A data mining perspective. ACM SIGKDD explorations newsletter,19(1): 22-36.
Siering, M.; Koch, J.A. & Deokar, A.V. (2016). Detecting fraudulent behavior on crowdfunding platforms: The role of linguistic and content-based cues in static and dynamic contexts. Journal of Management Information Systems, 33(2): 421-455.
Tacchini, E.; Ballarin, G.; Della Vedova, M.L.; Moret, S. & de Alfaro, L. (2017). Some like it hoax: Automated fake news detection in social networks. In: Procceding in Conference SoGood 2017 - Second Workshop on Data Science for Social Good, Vol. 1960.
Vosoughi, S. (2015). Automatic detection and verification of rumors on Twitter. Doctoral dissertation. Massachusetts Institute of Technology.
Vosoughi, S.; Roy, D. & Aral, S. (2018). The spread of true and false news online. Science, 359 (6380): 1146-1151.
Waldrop, M.M. (2017). News Feature: The genuine problem of fake news. Proceedings of the National Academy of Sciences, 114(48): 12631-12634.
Yang, F.; Liu, Y.; Yu, X. & Yang, M. (2012). Automatic detection of rumor on sina weibo. In: Proceedings of the ACM SIGKDD workshop on mining data semantics: 1-7.
Zeng, L.; Starbird, K. & Spiro, E. (2016). # unconfirmed: Classifying rumor stance in crisis-related social media messages. Proceedings of the International AAAI Conference on Web and Social Media, 10(1). No.1.
Zhang, H.; Fan, Z.; Zheng, J. & Liu, Q. (2012). An improving deception detection method in computer-mediated communication. Journal of Networks, 7(11): 1811.
Zhou, L.; Twitchell, D.P.; Qin, T.; Burgoon, J.K. & Nunamaker, J.F. (2003). An exploratory study into deception detection in text-based computer-mediated communication. In: 36th Annual Hawaii International Conference on System Sciences. IEEE.
Zhou, X. & Zafarani, R. (2018). Fake news: A survey of research, detection methods, and opportunities. ACM Computing Surveys, 53(109): 1-40. DOI: 10.1145/3395046.
Zubiaga, A.; Aker, A.; Bontcheva, K.; Liakata, M. & Procter, R. (2018). Detection and resolution of rumours in social media: A survey. ACM Computing Surveys (CSUR), 51(2): 1-36.
Zubiaga, A.; Liakata, M. & Procter, R. (2016). Learning reporting dynamics during breaking news for rumour detection in social media. ACM Transactions on Management Information Systems, 12(8): 1-16. DOI: 10.1145/3416703 (a).
Zubiaga, A.; Liakata, M.; Procter, R.; Bontcheva, K. & Tolmie, P. (2015). Towards detecting rumours in social media. In: Workshops at the Twenty-Ninth AAAI conference on artificial intelligence.
Zubiaga, A.; Liakata, M.; Procter, R.; Wong Sak Hoi, G. & Tolmie, P. (2016). Analysing how people orient to and spread rumours in social media by looking at conversational threads. PloS one, 11(3): e0150989 (b).
ارسال نظر در مورد این مقاله